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Stationarity versus non-stationarity
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Ordinary linear regression
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Ordinary linear regression (OLS)
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Mapping the results of an OLS
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Closer observations should have a greater weight
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Brunsdon C, Fotheringham AS and Charlton M (1996) 

Geographically weighted regression: a method for exploring spatial 

non-stationarity, Geographical Analysis, 28(4), 281-298 

yi= 0 + 1x1i
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Need to move towards a realistic 

apprehension of the behavior of 

spatial processes



Geographic Weighted Regression
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• The basic hypothesis is spatial heterogeneity

• We directly take into account non-stationarity and we admit 

that relationships in the geographical space will vary:

y(i) = 0(i) + 1 (i) x1 + 2 (i) x2 +… + ... + n (i) xn

+  (i)

Where (i) refers to a distinct location where parameters are 

estimated



Influence of explanatory variables
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• The closer two observations, the more similar the influence, 

the closer the coefficients of explanatory parameters

• Regression with close observations of location i only ?

−The more points in the sample, the lowest the variance 

−The more points in the sample, the higher the bias

• Solution ?



Reduce importance of most remote observations 
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Loonis & Bellefon (2018) INSEE Eurostat
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W Matrix
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Parameters are calculated
with the following estimator:

’  = (XTW(i) X)-1 XT W(i) Y

One “matrix” per i location,
i.e. per regression point



W Matrix
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Lloyd, 2009

i

Weighted value of variable 2 in the regression

No Var 2 Weight Var 2 in regression

1 6 1 6

2 52 0.99 51.48

3 41 0.88 36.08

4 25 0.72 18

5 22 0.27 5.94

6 9 0.08 0.72

7 43 0.03 1.29

8 67 0.006 0.402

9 32 0.0002 0.0064
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Distance from regression point
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Kernel functions
Key parameters

1. Shape of the kernel

a) Gaussian

b) Bi-square

c) Etc.

2. Fixed versus adaptive kernel

a) Distance

b) Number of neighbors

3. Size of the bandwidth



As many equations as there are geo-units
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•A GWR will generate 1 equation for each spatial unit i

•E.g. 50 spatial units

= 50 equations = 50 sets of estimated parameters

•Sets of local β0 , local βj, local significance tests (e.g. 

Student’s T), and local ri
2 values 



Set of local statistics
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OLS versus GWR
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Coefficient of determination

Residuals = (sum of the local residuals)2

OLR GWR

Akaike Information 

Criterion is a 

measure of the 

relative goodness 

of fit

Parameter estimate Range of parameter estimates



R2 = Coefficient of determination
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The global estimation of the quality of a model

is based on the equation of variance analysis:

SCT = SCE + SCR                

where:

• SCT = total sum of squares = total variance

• SCE = sum of explained squares

 =  variance explained by the model

• SCR = sum of residual squares

 = variance not explained by the model

And the coefficient of determination is:



Diagnostic information
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OLS GWR

https://sgsup.asu.edu/sparc/mgwr

MGWR



Local statistics
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Mapping local significance
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Net primary  production (NPP) in China
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Net primary  production (NPP) in China
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Net primary  production (NPP) in China
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Net primary  production (NPP) in China
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Poverty in Montreal
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Poverty in Montreal
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• Mapping the local significance  

(here Student’s T) of 

independent variables

• A significance test provides the 

probability to reject H0 for a 

given variable 

• A high T means that the 

corresponding variable is 

significant

% unemployment % monoparental families

% 1 person households % recent immigrants

% atypical workers % no school for 15-24 yo



Poverty in Montreal
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Conclusions on GWR
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• Spatially explicit approach to measure the relationship between a 

dependent and a set of independent variables

• This approach was designed in order to follow the first law of geography of 

Tobler, while respecting assumptions of classic statistics.

• GWR employs a spatial weighting function with the assumption that near 

places look more similar than distant ones - GEOGRAPHY MATTERS

• Residuals produced by GWR are generally much lower

• The outputs are location specific, hence mappable for further analysis

• This type of local analysis makes it possible to understand georeferenced 

phenomena into much more details and less bias than with OLS
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Thank you for your attention!
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